Univerzitet u Beogradu Mašinski fakultet KATEDRA ZA PROIZVODNO MAŠINSTVO

Predmet Industrijski roboti

Programiranje industrijskih robota korišćenjem uređaja za obučavanje

Predmetni nastavnici

Beograd, 2025

Metode u programiranju

Prilikom programiranja industrijskih robota moguće je koristiti dve metode: online i offline.

- Online
 - Koriste se uređaji za obučavanje (eng. teach box, teach pendant). To su HMI uređaji kojim operater komunicira sa upravljačkom jedinicom robota i programira njegovo kretanje.
 - Fizičkom ili kognitivnom interakcijom čoveka i robota (čovek izvršava transfer znanja i veština ka upravljačkoj jedinici robota, najčešće preko određenog haptičkog ili nekog sličnog uređaja) - Programming by Demonstration.
- Offline (Korišćenjem programskih jezika)
 - Programi se generišu eksterno, korišćenjem PC računara, na osnovu CAD modela u nekom od simulacionih okruženja (npr. ABB RobotStudio) i nakon generisanja oni se preko USB-a ili putem ethernet komunikacije prenose na upravljačku jedinicu robota.
 - Zadatak se može isprogramirati tako da se njegovo izvršenje može menjati u skladu sa promenama u procesu, na osnovu senzorskih informacija, u realnom vremenu (zavisi od upravljačke jedinice robota i dodatnog softvera i hardvera).

Programiranje u praksi zavisi od zadatka za čije se izvršenje robot programira, i to je najčešće kombinacija navedenih metoda. Nezavisno od metode programiranja, za programiranje se korisiti JEZIK koji upravljačka jedinica robota može da interpretira i izvršava (zavisi od proizvođača robota!). U nastavku će biti objašnjena struktura INFORM jezika za programiranje YASKAWA robota.

Unutar INFORM jezika za programiranje robota postoje četiri grupe instrukcija koje se koriste. To su:

- Instrukcije kretanja (MOVJ, MOVL, MOVC, ...),
 - Ovo su instrukcije kojim se robotu zadaje način kretanja (**MOVJ** kretanje u unutrašnjim koordinatama, **MOVL** linearno kretanje u spoljašnjim koordinatama, **MOVC** kretanje po kružnoj putanji, ...).
- I/O instrukcije (DIN, DOUT, PULSE, ...),
 - Ovo su instrukcije kojim se robotu zadaje način interakcije sa okruženjem (DIN rad sa digitalnim ulazima, DOUT rad sa digitalnim izlazima, PULSE aktivacija digitalnog izlaza u određenom trajanju i njegova deaktivacija, ...).
- Kontrolne instrukcije (JUMP, CALL, NOP, ...) i
 - Ovo su instrukcije kojim se kontroliše tok izvršenja programa (JUMP preskakanje dela programa nakon funkcije JUMP i izvršenje dela programa definisanog flag-om unutar te funkcije, CALL pozivanje drugog programa (funkcije) unutar trenutnog programa, NOP No operation, ...).
- Logičko-matematičke instrukcije (AND, ADD, SUB, ...).

Opšta struktura instrukcije unutar INFORM jezika za programiranje YASKAWA robota je data na slici 1.

Slika 1: Opšta struktura instrukcije

U nastavku će biti prikazani primeri iz uputstva za korišćenje YASKAWA robota u kojima se nalaze objašnjenja za najčešće korišćene instrukcije.

MOVJ - kretanje u unutrašnjim koordinatama

MOVJ	Function	Moves to a taught point with joint interpolation type.	
	Additional Item	Position data, Base axis position data, Station axis position data	These data do not appear on the screen.
		VJ= <play speed=""></play>	VJ: 0.01 to 100.00%
		PL= <position level=""></position>	PL:0 to 8
		NWAIT	
		UNTIL statement	
		ACC=(acceleration adjustment ratio)	ACC: 20 to 100%
		DEC=(deceleration adjustment ratio)	DEC: 20 to 100%
	Example	MOVJ VJ=50.00 PL=2 NWAIT UNTIL IN#(16)=ON	

Slika 2: MOVJ instrukcija

Primer: MOVJ VJ=30.00 ACC=30 DEC=65 Opis:

- MOVJ kretanje u unutrašnjim koordinatama;
- VJ=30.00 brzina kretanja je 30% od maksimalne brzine kretanja robota;
- ACC=30 ubrzanje zglobova je 30% od maksimalnog ubrzanja zglobova;
- DEC=65 usporenje zglobova je 65% od maksimalnog usporenja zglobova.

MOVL	Function	Moves to a taught point with linear interpolation type.	
	Additional Item	Position data, Base axis position data, Station axis position data	These data do not appear on the screen.
		V= <play speed="">, VR=<play of="" posture="" speed="" the="">, VE=<play axis="" external="" of="" speed=""></play></play></play>	V:0.1 to 1500.0 mm/s 1 to 9000.0 cm/min VR:0.1 to 180.0 deg/s VE:0.01 to 100.00%
		PL= <position level=""></position>	PL:0 to 8
		CR=(corner radius)	CR: 1.0 to 6553.5mm
		NWAIT	
		UNTIL statement	
		ACC=(acceleration adjustment ratio)	ACC: 20 to 100%
		DEC=(deceleration adjustment ratio)	DEC: 20 to 100%
	Example	MOVL V=138 PL=0 NWAIT UNTIL IN#(16)=ON	

MOVL - linearno kretanje u spoljašnjim koordinatama

Slika 3: MOVL instrukcija

Primer: MOVL V=540.00 ACC=20 DEC=85 Opis:

- MOVL linearno kretanje u spoljašnjim koordinatama;
- VJ=540.00 brzina kretanja je 540mm/s;
- ACC=20 ubrzanje zglobova je 20% od maksimalnog ubrzanja zglobova;
- DEC=85 usporenje zglobova je 85%od maksimalnog usporenja zglobova.

Pri programiranju zadatka robota, definišu se početni, krajnji i međupoložaji. Međupoložaji se tokom izvršenja programiranog radnog zadatka ostvaruju sa određenom preciznošću. Nivo preciznosti je zadat kao parametar **PL**.

	Position Levels	Accuracy
Position lever 0	0	Teaching position
	1	Fine
P2 P3	to	
Postion level 1	8	Rough
Position level 2		
Position level 3		
Position level4		
Positioning Level		
P1		

Slika 4: Preciznost kretanja

Grafički se to može prikazati preko profila brzine. Kada je parametar PL=0 tada TCP robota prolazi kroz svaki zadati položaj, početni, krajnji i kroz sve zadate međupoložaje, odnosno zaustavlja se u svakom od njih. Kada je parametar PL=1-8 tada se robot ne zaustavlja u svakom međupoložaju već ih zaobilazi sa određenom preciznošću (vrši aproksimativno kretanje).

Slika 5: Preciznost kretanja - profil brzine

Nekoliko često korišćenih instrukcija za kontrolu toka programa su TIMER i WAIT.

TIMER - zaustavlja s	e izvršavanje	koda određeni	vremenski period
----------------------	---------------	---------------	------------------

TIMER	Function	Stops for the specified time.	
	Additional Item	T= <time (seconds)=""></time>	0.01 to 655.35 s
	Example	TIMER T=12.50	

Slika 6: TIMER instrukcija

Primer: TIMER T=12.50 Opis:

- TIMER zaustavlja se izvršavanje koda određeni vremenski period;
- T=12.50 čeka se 12.5 sekundi.

WAIT - zaustavlja se izvršavanje koda dok se ne ispuni određeni uslov

WAIT	Function	Waits until the external input signal status matches the specified status.			
	Additional Item	IN# (<input number=""/>), IGH# (<input group="" number=""/>), IG# (<input group="" number=""/>),			
		OT# (<user number="" output="">), OGH# (<output group="" number="">), SIN# (<system input="" number="">), SOUT# (<system number="" output="">)</system></system></output></user>			
		<status>,B<variable number=""></variable></status>			
		T= <time (seconds)=""></time>	0.01 to 655.35 s		
	Example	WAIT IN# (12)=ON T=10.00 WAIT IN# (12)=B002	1		

Slika	7:	WAIT	instrukcija

Primer: WAIT IN#(12)=ONOpis:

- WAIT zaustavlja se izvršavanje koda dok se ne ispuni određeni uslov;
- IN#(12)=ON čeka se aktivacija digitalnog ulaza 12.

Primeri programiranja radnog zadatka robota

Primer 1:

Vrh robota (TCP), na početku, dolazi u početni položaj P_1 pa se zatim linearno kreće kroz međupoložaje P_2 i P_3 . Nakon dolaska u međupoložaj P_3 robot miruje 5 sekundi i linernom interpolacijom odlazi u položaj P_4 .

Slika 8: Primer 1

Prikaz koda za izvršenje ovog zadatka, sa objašnjenima svake linje koda, je dat u nastavku.

NOP			
MOVJ	VJ=	5.00	;kretanje u unutrašnjim koordinatama u pocetni položaj P1
MOVL	V=	100	;ostvarivanje prvog međupoložaja P2, linearnom
			interpolacijom, brzinom 100 mm/s
MOVL	V=	100	;ostvarivanje drugog međupoložaja P3, linearnom
			interpolacijom, brzinom 100 mm/s
TIMER	T=	5.0	;vremenska zadrska od 5 sekundi
MOVL	V=	100	;ostvarivanje krajnjeg položaja P4, linearnom
			interpolacijom, brzinom 100 mm/s
END			

Kompletan kod se ispisuje između linija NOP i END i one ne smeju izostati iz koda.

Primer 2:

Vrh robota (TCP) se kreće zadatom putanjom iz primera 1. Nakon kretanja u početni položaj P_1 robot čeka signal za početak izvršenja zadatka (digitalni ulaz 10). Po aktiviranju signala, robot izvršava radni zadatak. Završetak radnog zadatka robot signalizira putem digitalnog izlaza 9.

Za potrebe ovog primera, koristiće se instrukcija **SET** kojom će se upravljati digitalnim izlazom 9 i instrukcija **WAIT** kojom se proverava stanje digitalnog ulaza 10.

Slika 9: Primer 2

Prikaz koda za izvršenje ovog zadatka, sa objašnjenima svake linje koda, je dat u nastavku.

```
NOP
SET DOUT #(9)=0;podesavanje digitalnog izlaza 9 - deaktiviran
MOVJ VJ= 5.00 ;kretanje u unutrašnjim koordinatama u pocetni položaj P1
WAIT IN#(10)=ON;cekanje START signala
              ;ostvarivanje prvog međupoložaja P2, linearnom
MOVL
       V= 100
                interpolacijom, brzinom 100 mm/s
MOVI.
       V= 100
               ;ostvarivanje drugog međupoložaja P3, linearnom
                interpolacijom, brzinom 100 mm/s
TIMER
       T= 5.0
               ;vremenska zadrska od 5 sekundi
MOVL
       V= 100
               ;ostvarivanje krajnjeg položaja P4, linearnom
                interpolacijom, brzinom 100 mm/s
SET DOUT #(9)=1;podesavanje digitalnog izlaza - aktiviran
END
```

Programiranje obučavanjem

Kao što je već objašnjeno, radne zadatke koji su opisani primerima 1 i 2 je moguće isprogramirati na više načina. Sada će biti objašnjeno programiranje obučavanjem korišćenjem uređaja za obučavanje.

Kod programiranja obučavanjem pomoću uređaja, potrebno je pratiti sledeću logiku. Vrh robota (TCP) potrebno je prvo ručno dovesti u svaki položaj kroz koji je potrebno da TCP prođe prilikom izvršavanja radnog zadatka. Nakon što se TCP dovede u željeni položaj, položaj je potrebno zapamtiti i nakon toga podesiti način kretanja i ostale željene parametre.

Slika 10: Kretanje robota prilikom programiranja obučavanjem

Uređaj za obučavanje robota, koji se koristi da bi se robot pomerao i da bi se generisao program se naziva Teach Pendant ili Programing pendant i prikazan je na slici 11.

Slika 11: Uređaj za programiranje

Uređaj za programiranje je opremljen tasterima i prekidačima koji se koriste prilikom obučavanja robota i prilikom korigovanja radnih zadataka. Na ovom uređaju se, pored tastera i prekidača, nalazi i ekran osetljiv na dodir preko koga se takođe vrši interakcija sa robotom. Opis pojedinačnih, najčešće korišćenih tastera i prekidača ja dat u nastavku.

[START]

Izvršavanje radnog zadatka, nakon programiranja. Taster sija zelenom bojom dok se izvršava radni zadatak.

Sigurnosni prekidač - pečurka. Isključuje servo motore kada se aktivira. Deaktivira se obrtanjem pečurke u desno.

Preklopni prekidač kojim se odabira mod rada robota. PLAY - mod za izvršavanje radnog zadatka robota TEACH - mod za obučavanje robota REMOTE - mod za upravljanje robotom nekim drugim uređajem ili sistemom

Cursor

Taster za pomeranje kursora na ekranu

[SELECT]

Taster za odabir željenih opcija

Omogućava napajanje servo motora. Mora biti aktiviran ako je potrebno pomerati robota. Dok je aktivan, iznad njega sija led indikator.

[COORD]

Odabir koordinatnog sistema za kretanje dok se robot obučava. Svaki pritisak na ovaj taster menja koordinatne sisteme po sledećem redosledu: JOINT - WORLD - TOOL - USER

U-axis R-axis B-axis T-axis JO Sva Sist

JOINT - Joint Coordinates - Unutrašnje koordinate. Svaka od osa se kreće nezavisno, kada je odabran ovaj koordinatni sistem.

WORLD - Cartesian Coordinatess - Spoljašnje koordinate. Vrh robota (TCP) se kreće paralelno sa osama X, Y, Z baze robota.

USER - User Coordinates - Koordinatni sistem definisan od strane operatera.

X, Y i Z osa ovog koordinatnog sistema se definišu u proizvoljnoj tački i pod proizvoljnim uglom. Vrh robota se kreće paralelno ovim osama.

TOOL - Tool Coordinates - Koordinate definisane u koordinatnom sistemu end-efektora. Efektivni pravac alata koji je postavljen na interfejs ploču robota određuje Z osu ovog koordinatnog sistema. U ovom slučaju, vrh robota se kreće paralelno osama ovog koordinatnog sistema.

[SHIFT]

Taster koji se koristi za promenu funkcije pojedinih tastera koji imaju više funkcija.

[INFORM LIST]

Taster kojim se ulazi u meni odabira pojedinačnih instrukcija INFORM jezika.

[MOTION TYPE]

Taster kojim se odabira tip interpolacije za kretanje do željene tačke tokom izvršavanja radnog zadatka. Svaki pritisak na ovaj taster menja tip interpolacije po sledećem redosledu: MOVJ - MOVL - MOVC - MOVS

[FWD]

Taster kojim se robot pomera prema napisanom programu, dok je taster pritisnut. Može se koristiti kao provera napisanog programa pre puštanja robota u PLAY mod rada.

[BWD]

Taster kojim se robot pomera prema napisanom programu, u nazad, dok je taster pritisnut. Može se koristiti kao provera napisanog programa pre puštanja robota u PLAY mod rada.

[DELETE]

Brisanje odabrane instrukcije.

[INSERT]

Ubacivanje u program odabrane instrukcije.

[MODIFY]

Taster pomoću koga je moguće izvršiti modifikaciju neke već isprogramirane tačke u radnom zadatku robota.

[ENTER]

Taster za potvrđivanje odabrane instrukcije i opcije.

Taster za podešavanje brzine kretanja u toku programiranja, odnosno obučavanja robota. Svaki pritisak na ovaj taster menja brzinu po sledećem redosledu: Inching - Slow - Medium - Fast

Axis Key

Tasteri za pomeranje pojedinačnih osa ili vrha robota u zavisnosti od odabranog koordinatnog sistema.

Numeric Key

7 Erected Britist	8 ARCON	9 % FEED
4 smov	5 ARECOM	B Ser
1 TIMER	2 C Toal 31	3 C
0 REFP	- C '8#'	- C 7992

Tasteri za unos podataka.

Ekran osetljiv na dodir je podeljen na pet zona. One su prikazane na slici ispod.

Slika 12: Ekran osetljiv na dodir

Postupak programiranja - unošenje instrukcija za kretanje

- 1. Podesiti mod rada na TEACH.
- 2. Sada je potrebno kreirati novi radni zadatak (JOB). To se radi na sledeći način:
 - MAIN MENU \rightarrow JOB \rightarrow CREATE NEW JOB

	12 🗹 🐼 🖾 📮 🔭
JOB	JOB P Menu
ARC WELDING	SELECT JOB
VARIABLE B001	CREATE NEV JOB
	MASTER JOB
ROBOT	JOB CAPACITY
SYSTEM INFO	TTO CYCLE
Main Menu	Simple Menu

• Sada se otvara prozor u koji je potrebno uneti naziv i propratne parametre novog radnog zadatka.

JOB	EDIT DISPLA	Y UTILITY	12 🗹 📶 🆇 🔟 📑 👘
JOB ARC WELDING VARIABLE BOOT IN/OUT IN/OUT ROBOT SYSTEM INFO	NEW JOB CREA JOB NAME COMMENT GROUP SET		
	EXECUTE	CANCEL	
Main Menu	Simple Menu		

• Nakon što se završi unos željenih podataka, pritisne se EXECUTE i novi radni zadatak je otvoren. Otvara se novi prozor u koji se unosi novi program. NOP i END instrukcije se automatski generišu i novi program se ispisuje između njih.

JOB	E	DIT	DISPLAY	UTILITY	12 🗉	l 📶 😣 🔟	📑 🖰	
JOB MMM MM		JOB C J:TES CONTR	ontent To1 OL group:			S:0000 TOOL: **		
ARC WELDIN	łG	0000 0001	NOP END					
VARIABLE B001								
ROBOT								
SYSTEM INF	0	MOV	VJ=0.78					
Main Menu		Simp	e Menu					

- 3. Kursor treba da se nalazi u liniji koda ispod koje želimo da dodamo novi položaj za radni zadatak robota. Na početku to je svakako linija u kojoj se nalazi NOP instrukcija.
- 4. Pritiska se taster SERVO ON i taster ENABLE koji se nalazi sa zadnje strane uređaja za obučavanje. Ovim je robot spreman za pomeranje.
- 5. Vrh robota (TCP) se dovodi u željeni položaj.
- 6. Pritiska se taster INSERT.
- 7. Pritiska se taster ENTER i ovaj položaj je sačuvan u programu i nalazi se između NOP i END. Sada je potrebno definisati na koji način (vrsta kretanja) se dolazi do ovog položaja (MOVL, MOVJ, ...), kao i ostale parametre ovog kretanja.
 - Kursor se postavlja na novu, insertovanu instrukciju,

• Pritiska se taster SELECT i kursor se prebacuje na zonu ekrana gde je moguće upisivati željene vrednosti.

• Da bi se promenila vrsta kretanja, kao i brzina kretanja, potreno je kursor podesiti ili na vrstu kretanja ili na brzinu i istovremenim pritiskom tastera SHIFT i \uparrow ili \downarrow se vrši promena.

	A	
I	MOVJ VJ=50.00	

- Nakon sto se završe izmene, pritiska se taster ENTER i položaj je unet u program radnog zadatka.
- 8. Ponavljanjem ovog postupka se unose svi ostali potrebni položaji da bi se izvršio radni zadatak.

Insertovanje instrukcija programskog jezika INFORM

Pored ručnog pomeranja robota u željeni položaj i memorisanja tog položaja, moguće je i insertovati željene instrukcije u program robota. U nastavku će biti objašnjen način insertovanja željenih instrukcija u program bez pomeranja robota.

Instrukcije su podeljene u osam grupa i prikazane su u tabeli 1. Instrukcijama se pristupa tako što se pritisne taster **INFORM LIST**.

Nakon što se pritisne taster **INFORM LIST** sa desne strane ekrana osetljivog na dodir se prikazuje meni sa grupama raspoloživih instrukcija.

JOB	EDIT	DISPLAY	UTILITY	12 🗹 📶 😣	10 📑 🥀	
JOB CONTEN J: TESTO1						IN/OUT
CONTROL OF	10UP: R1		TOOL:	**		CONTROL
0001 SET E	3000 1					DEVICE
0002 SET E	VJ=80.00					MOTION
0004 MUVJ 0005 DOUT	VJ=80.00 OT#(10) ON					ARITH
0006 TIME 0007 MOVJ	X T=3.00 VJ=80.00					SHIFT
0008 MOVJ 0009 MOVJ	VJ=100.00 VJ=100.00					OTHER
0010 MOVJ 0011 END	VJ=100.00					SAME
COTT END						PRIOR
_						
Main Men	Simp	le Menu				

Slika 13: Pristup grupama instrukcija

Prikaz	Grupa instrukcija	Sadržaj	Primer	
IN/OUT	Ulazno/izlazna instrukcija	Kontroliše ulaze i izlaze	DOUT, WAIT,	
CONTROL	Kontrolna instrukcija	Kontroliše tok programa	JUMP, TIMER,	
MOTION	Instrukcija kretanja	Pokreće manipulator	MOVJ, MOVL,	
DEVICE	Radne instrukcije	Za konktretan radni zadatak. Zavarivanje, Farbanje,	ARCON,	
ARITH	Aritmetičke instrukcije	Instrukcije za aritmetičke proračune	ADD, SET,	
SHIFT	Instrukcije pomeranja	Napredne instrukcije za programiranje	SFTON, SFTOF,	
SENS	Instrukcije za senzore	Napredne instrukcije za rad sa senzorima	COMARCON,	
OTHER	Ostale instrukcije	Instrukcije koje ne pripadaju ostalim grupama	SHCKSET,	
SAME	-	Određuje instrukciju na kojoj se nalazi kursor	-	
PRIOR	-	Određuje prethodno registrovanu instrukciju	-	

1abela 1: Prikaz instrukcija	Tabela	1:	Prikaz	instrul	kcija	ι
------------------------------	--------	----	--------	---------	-------	---

Pritiskom na željenu grupu instrukcija na ekranu se otvara novi meni sa svim instrukcijama iz te grupe.

	IIMP	CWALL	
			CONTROL
	CALL	MSG	DEVICE
	TIMER	INPUT	MOTION
	LABEL	ADVINIT	ARITH
	COMMENT	ADVSTOP	SHIFT
	RET		OTHER
	NOP		SAME
-	PAUSE		PRIOR
			,

Slika 14: Pristup instrukcijama

Insertovanje instrukcija u program

- 1. Dovesti kursor na željenu poziciju na ekranu,
 - Kursor je neophodno dovesti na liniju ispod koje je potrebno insertovati instrukciju.

- 2. Pritisnuti taster INFORM LIST,
 - Otvara se meni sa desne strane ekrana, sa grupama instrukcija.

JOB	EDIT	DISPLAY	UTILITY	12 🗹 📶 🧐	10 📑 🥀	
JOB CONTEN J:TEST01	νT		S:000			IN/OUT
CONTROL GE	ROUP: R1		T00L: (00		CONTROL
0000 NOP	3000 1					DEVICE
0002 SET E	VJ=80.00					MOTION
0004 MOVJ 0005 DOUT	VJ=80.00 OT#(10) ON					ARITH
0006 TIMER 0007 MOVJ	R T=3.00 VJ=80.00					SHIFT
0008 MOVJ	VJ=100.00					OTHER
0010 MOVJ	VJ=100.00					SAME
UUTT END						PRIOR
Main Men	J Simpl	le Menu				

- 3. Selektuje se željena grupa instrukcija
 - Odabira se željena instrukcija iz određene grupe instrukcija.

JOB	EDIT	DISPLAY UTILITY 🛛 12 🗷 📶 📢 🐻 寻 👘						
JOB CONTENT J:TEST01 S:0001						IN/OUT		
CONTROL OF	ROUP: R1		T00L:	00	DIN	CONTROL		
0001 SET E	3000 1				WAIT	DEVICE		
0002 SET E	VJ=80.00				PULSE	MOTION		
0004 MUV3 V3=80.00								
0006 TIME 0007 MOVJ	R T=3.00 VJ=80.00					SHIFT		
0008 M0VJ VJ=100.00						OTHER		
0010 MOVJ	VJ=100.00					SAME		
DULICE OT	#(1)					PRIOR		
POLSE 01#(1)								
Main Menu Simple Menu								

- 4. Izmeniti željene parametre svake instrukcije prema potrebi. Ovo se izvodi u prostoru ekrana ispod programa.
- 5. Pritisnuti taster **INSERT** på taster **ENTER** da bi se instrukcija insertovala u program.

Na ovaj način se insertuju instrukcije u program, bez pomeranja robota.